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II. Mixtures
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This work is the extension of previous work dedicated to pure fluids. The
same method is extended to the representation of thermodynamic properties
of a mixture through a fundamental equation of state in terms of the Helm-
holtz energy. The proposed technique exploits the extended corresponding-
states concept of distorting the independent variables of a dedicated equation
of state for a reference fluid using suitable scale factor functions to adapt
the equation to experimental data of a target system. An existing equation
of state for the target mixture is used instead of an equation for the refer-
ence fluid, completely avoiding the need for a reference fluid. In particular,
a Soave–Redlich–Kwong cubic equation with van der Waals mixing rules is
chosen. The scale factors, which are functions of temperature, density, and
mole fraction of the target mixture, are expressed in the form of a multilayer
feedforward neural network, whose coefficients are regressed by minimizing
a suitable objective function involving different kinds of mixture thermody-
namic data. As a preliminary test, the model is applied to five binary and
two ternary haloalkane mixtures, using data generated from existing dedicated
equations of state for the selected mixtures. The results show that the method
is robust and straightforward for the effective development of a mixture-
specific equation of state directly from experimental data.
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1. INTRODUCTION

The development of models for the accurate representation of thermodynamic
properties of fluid mixtures is an important task for thermodynamics, since
such properties are fundamental input for the design, optimization, and
control of processes. Examples for relevant technical applications are the
fields of refrigeration and air conditioning, but the interest for such mod-
els is much wider and, for instance, comprises many unit operations in
chemical engineering.

Mixture models in terms of the Helmholtz energy A play an impor-
tant role. In fact, they are fundamental equations of state (EoS), i.e., all the
thermodynamic properties of the system can be calculated from them sim-
ply by combinations of derivatives and no integral calculation is required.
For a mixture m containing C components, a fundamental EoS can be
expressed as

am (Tm, ρm, z̄) = Ao
m (Tm, ρm, z̄)

RTm
+ AR

m (Tm, ρm, z̄)

RTm

=ao
m (Tm, ρm, z̄)+aR

m (Tm, ρm, z̄) (1)

where the reduced Helmholtz energy am is a function of temperature Tm,
molar density ρm, and mole fraction array z̄, while R is the universal gas
constant.

The ideal part ao
m reads

ao
m (Tm, ρm, z̄)=

C∑

i=1

zia
o
i (Tm, ρm)+

C∑

i=1

zi ln (zi) (2)

On the right side of Eq. (2), the first part is a linear combination of the
reduced ideal-gas Helmholtz energy ao

i of each of the C components and
the second part represents the reduced Helmholtz energy of ideal mixing.
The functions ao

i (T , ρ) are evaluated for each component at the mixture
conditions (T = Tm, ρ = ρm) from

ao
i (T , ρ)= Ao

i (T , ρ)

RT
= H o

i,o

RT
− So

i,o

R
−1 + 1

RT

T∫

To

Co
p,i (T ) dT

− 1
R

T∫

To

Co
p,i (T )

T
dT + ln

(
Tρ

Toρo

)
(3)

where only the ideal-gas isobaric heat capacities Co
p,i (T ) of the compo-

nents are required; H o
i,o and So

i,o are the reference values of ideal-gas
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enthalpy and ideal-gas entropy, respectively, for the ith component at the
reference conditions (To, ρo).

Since the ideal part is easily obtained from the knowledge of the
ideal-gas isobaric heat capacity functions of the components, the modeling
effort is associated in particular with the residual part aR

m. For the devel-
opment of an EoS dedicated to a mixture, two methods are mainly avail-
able for this part:

– the multi-fluid approach, independently proposed by Tillner-Roth
[1, 2] and Lemmon [3] and developed with further studies [4–7],
that works with a linear combination of the reduced residual Helm-
holtz energy of the pure components and adds a departure func-
tion. Such a procedure requires the EoSs for all the pure fluids
composing the mixture, and this restricts the applicability of the
method. Moreover, experimental data are required for the regres-
sion of the departure function;

– the one-fluid approach, usually based on extended corresponding
states (ECS) in various versions and applications [8–15], in which
the mixture behavior at fixed composition is considered equivalent
to that of a pseudo-pure fluid whose parameters are obtained from
a combination of the pure-component parameters through empir-
ical mixing rules. Such mixing rules also have binary interaction
parameters that are regressed on mixture experimental data.

An improved version of the ECS technique was presented in Refs. 16
and 17. Even if in those studies the basic framework of the model was
retained, the scale factors, i.e., the functions distorting the independent
variables of the EoS of the reference fluid to meet the surface of the tar-
get system, were directly obtained as continuous functions in neural net-
work form through regression on experimental data. The ECS requirement
to choose a reference fluid conformal with the system of interest and hav-
ing a high-accuracy dedicated equation of state (DEoS) is anyway present,
and it can constitute a limiting condition for the model application.

Moving from such studies, a new modeling technique was presented
for pure fluids in Ref. 18, in which a preliminary EoS for the target fluid
itself is assumed as a reference instead of the equation for the reference
fluid; in this way, the reference fluid becomes obsolete. The starting EoS,
that can be, for instance, a simple cubic equation, is then improved and
extended through the application of scale factors that correct the discrep-
ancies between the initial model and experimental data by distorting the
independent variables of the equation. For this reason, the method was
labeled as “extended equation of state” (EEoS).
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Again, the scale factors are expressed as continuous functions by a
neural network trained on experimental data. Since this technique is a
combination of the EEoS method with neural networks (NN), it was con-
cisely indicated as “EEoS-NN model”.

The present work deals with the extension of the method proposed
for pure fluids in Ref. 18 to mixtures.

2. SUMMARY OF THE EEoS-NN MODEL FOR PURE FLUIDS

In this section, the basic elements of the EEoS-NN modeling tech-
nique for pure fluids are summarized to give the basis for the extension of
the method to mixtures. In a former paper [18], the EEoS-NN framework
for pure fluids was fully discussed and reference is made to that work
for further modeling details, while the ECS method and its enhancements
were dealt with in Refs. 16 and 17.

The background of the proposed technique is constituted by the ECS
method, which states that for two conformal fluids, denoted with the sub-
scripts 0 and j , the fundamental equation holds:

aR
j

(
Tj , ρj

)=aR
0 (T0, ρ0)=aR

0

(
Tj

/
fj , ρjhj

)
(4)

where the scale factors fj and hj can be expressed as

fj = Tc,j

Tc,0
θj

(
Tj , ρj

)
(5)

hj = ρc,0

ρc,j
φj

(
Tj , ρj

)
(6)

The shape functions θj and φj are fluid-specific functions in the indepen-
dent variables temperature and density of the fluid of interest. In case that
the conformality condition is exactly fulfilled for the fluids, the shape func-
tions are identically equal to 1 and the scale factors coincide with the
critical constant ratios; otherwise, the shape functions account for the
departure from perfect similarity in terms of the corresponding-states prin-
ciple.

The goal of the ECS method is to represent the thermodynamic
behavior of the target fluid j with respect to the reference fluid 0, for
which a DEoS must be available. Once the shape functions of the target
fluid are determined, all of its thermodynamic properties can be obtained
through differentiation of the fundamental equation, Eq. (4), with respect
to temperature and/or density.
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In order to overcome the basic requirements of the ECS method,
which are the conformality between target and reference fluids and the
availability of a fundamental DEoS for the reference fluid, an EEoS model
has been proposed [18] avoiding these constraints. Instead of a “reference
fluid,” only a “reference equation” for the target fluid itself is needed for
the application of the technique. Any EoS in a fundamental form can be
assumed, but considering the general requirement that the model repre-
sents the mixture behavior in any thermodynamic region, including the
coexistence surfaces, only the fundamental form a(T , ρ) can be consid-
ered. A Soave–Redlich–Kwong (SRK) cubic EoS [19, 20] can for instance
be assumed, since it is possible to set it up for any fluid in an almost
predictive mode. The precision of the reference EoS is then enhanced, or
“extended,” through the application of the shape functions to its indepen-
dent variables maintaining the formalism of Eq. (4), see Appendix. For
sake of clarity, in the following the term “reference equation” is replaced
with the term “basic equation.”

In the proposed method [18], the analytical form of the shape
functions θj (Tj , ρj ) and φj (Tj , ρj ) is expressed through a multi-layer feed-
forward neural network (MLFN), that is, a universal function approx-
imator [21]. The values of the coefficients of the neural network are
obtained through a regression procedure, indicated as “training,” which
forces the model to represent known values of experimentally accessible
thermodynamic quantities for the target fluid, aimed at obtaining a pre-
cise multiproperty representation of the fluid itself.

3. MATHEMATICAL FORMULATION OF THE EEoS-NN MODEL
FOR MIXTURES

3.1. EEoS Framework

For the case of a mixture m with C components, the EEoS funda-
mental equation for a pure fluid, Eq. (4), is rewritten in the independent
variables Tm, ρm, and z̄

(= z1, . . . , zC−1
)
:

aR
m (Tm, ρm, z̄)=aR

0 (T0, ρ0, z̄) (7)

where z̄ is the array of mole fractions and the subscript 0 indicates the
basic EoS assumed for the target mixture. It should be noted that in this
case, in contrast with the customary formalism of the ECS format for mix-
tures [11–13, 17], the equation assumed as a reference also depends on the
mixture composition.

In order to fulfill Eq. (7), the independent variables T0 and ρ0 of the
mixture basic EoS have to be “distorted” through the scale factor func-
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tions fm and hm, which are individually determined for the mixture of
interest:

T0 = Tm

fm (Tm, ρm, z̄)
(8)

ρ0 =ρm hm (Tm, ρm, z̄) (9)

The mixture shape functions θm and φm can be introduced to describe fm
and hm:

fm = Tc,m

Tc,0
θm (Tm, ρm, z̄) (10)

hm = ρc,0

ρc,m
φm (Tm, ρm, z̄) (11)

but, since the target and reference systems are the same, the ratios of their
pseudo-critical temperatures and densities are equal to 1 and consequently
the scale factors and the shape functions coincide:

fm =fm (Tm, ρm, z̄)= θm (Tm, ρm, z̄) (12)

hm =hm (Tm, ρm, z̄)= φm (Tm, ρm, z̄) (13)

Therefore, in this case the mixing rules for the critical parameters, that
would be unavoidable for a multi-fluid approach, are not required. The
fundamental equation of the mixture EEoS model is finally expressed as

aR
m (Tm, ρm, z̄)=aR

0

(
Tm
/
fm, ρm hm, z̄

)
(14)

Once the scale factor functions fm and hm for the target mixture
are known, any other thermodynamic function can be obtained from this
equation just through derivatives with respect to temperature, density, and
mole fraction; in fact, Eq. (14) represents a fundamental equation of state
for the target mixture. The mathematical relations for the calculation of
thermodynamic properties, given in the Appendix, are the same as those
for the ECS model [11, 16, 17], but in the present case the equation for the
reference fluid is substituted by the basic equation for the mixture itself.

A significant formal difference with the ECS framework is given by
the partial molar fugacity coefficient ϕ̂i for the ith mixture component,
that in EEoS format reads
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lnϕ̂i =
[
∂ (nlnϕm)

∂ni

]

Pm,Tm,nj �=i

= lnϕ̂0,i − ln
[
1+uR

0 Fρ +ZR
0

(
1+Hρ

)]

+ln
(

1+ZR
0

)
+uR

0

(
Fni

+Fρ

)

+ZR
0

(
Hni

+Hρ

)
(15)

where ϕ̂0,i is the partial molar fugacity coefficient calculated by the basic
EoS, ni is the number of moles of component i in the system, n is the
total number of moles, ZR

0 = Z0 − 1 and uR
0 = UR

0

/
RT0 are, respectively,

the residual compressibility factor and the reduced residual internal energy
both obtained from the basic equation, and Fρ and Hρ are the logarith-
mic derivatives of the scale factors with respect to density. The terms Fni

and Hni
are the logarithmic derivatives of the scale factors with respect to

the number of moles ni and they can be expressed as

Fni
=
(

∂fm

∂ni

)

Tm,ρm,nj �=i

(
ni

fm

)

= 1
fm

{(
∂fm

∂zi

)

Tm,ρm,zj �=i

−
C−1∑

k=1

[
zk

(
∂fm

∂zk

)

Tm,ρm,zj �=k

]}
(16)

Hni
=
(

∂hm

∂ni

)

Tm,ρm,nj �=i

(
ni

hm

)

= 1
hm

{(
∂hm

∂zi

)

Tm,ρm,zj �=i

−
C−1∑

k=1

[
zk

(
∂hm

∂zk

)

Tm,ρm,zj �=k

]}
(17)

The equations representing the various thermodynamic functions resulting
from the mixture model are always a combination of residual functions
calculated from the mixture basic EoS and of derivatives of the scale func-
tions fm and hm. The calculation of such properties from the EEoS model
requires the availability of a basic EoS for the mixture itself and of the
individual scale functions for the target mixture:

fm =fm (Tm, ρm, z̄) (18)

hm =hm (Tm, ρm, z̄) (19)

which, unlike the pure fluid case [18], depend also on the mixture molar
composition.

In the following it will be discussed how to supply the basic EoS for
the target mixture and then how to obtain the functional forms of the
mixture scale factor functions.
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3.2. Basic EoS for the Target Mixture

The application of the EEoS model is not restricted to a particular
choice of the functional form for the mixture basic EoS, but only at the
condition that it is expressed as a fundamental equation in terms of Helm-
holtz energy as a function of temperature, density, and mole fraction. A
different selection of the EoS modifies only the analytical developments
concerning the EoS itself, while the rest of the EEoS model is left unmodi-
fied. For instance, it could be possible to proceed to an enhancement of an
existing DEoS for the target mixture after new data sets are made avail-
able in the literature: in this case such a DEoS could be assumed as the
basic EoS for the EEoS model and an improved representation of the
thermodynamic surface for the mixture would be developed from it.

An opposite situation is found when no DEoS has been previ-
ously developed for the studied mixture or even its components have not
yet been thermodynamically represented. In this case it is convenient to
choose a very simple and general form for the basic EoS in order to allow
the representation of practically any mixture in a predictive mode, even if
the mixture is represented with low accuracy. A cubic EoS is a convenient
choice for these conditions.

In the first part of this work [18], the SRK cubic EoS [19, 20] with the
Peneloux volume translation [22] was assumed as the basic EoS and the same
choice is maintained here for the description of mixtures. As shown in Ref. 18,
the SRK equation can be easily converted into a fundamental form giving

aR
0 =−ln [1+ (c−b)ρ0]− aSRK

RT0b
ln
[

1+ (c+b)ρ0

1+ cρ0

]
(20)

For a mixture, the coefficients aSRK, b, and the volume translation parameter
c in Eq. (20) depend also on molar composition and are obtained from the
corresponding parameters for the pure components by suitable mixing rules.
The conventional van der Waals mixing rules are assumed here because of their
wide applicability together with a very simple formulation:

aSRK =
C∑

i=1

C∑

j=1

zizj

(
aiaj

)1/2 (1−kij

)
(21)

b=
C∑

j=1

zj bj (22)

c=
C∑

j=1

zj cj (23)
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where aj , bj , and cj are the SRK parameters of the j th pure component
of the mixture and zj is its mole fraction. Details on the substance-specific
parameters are reported in Ref. 18; here it is recalled that only the param-
eters bj and cj are constant, whereas aj is a function of temperature and
acentric factor ωj .

The binary interaction coefficients kij in Eq. (21) are usually regressed
from mixture experimental data; in the EEoS model they may be set equal
to zero, since the resulting deviations of a totally predictive cubic EoS can
be recovered by the action of the mixture scale factors, particularly in the
case of moderately deviating mixtures.

All the thermodynamic properties of the basic equation are obtained
from differentiation of Eq. (20) with respect to temperature and density,
following the classical relations for fundamental EoS [1, 2, 23]. These
quantities, denoted by the subscript 0, represent the contributions of the
basic equation which enter into the expressions for the property calcula-
tion borrowed from the ECS framework [16, 17].

In particular, for the representation of the partial molar fugacity
coefficient ϕ̂i , Eq. (15), the partial molar fugacity coefficient ϕ̂0,i expressed
from the basic EoS is calculated as

lnϕ̂0,i = −ln {Z0 [1+ (c−b)ρ0]} − aSRK

RT0b

(
1+ āSRK,i

aSRK
− b̄i

b

)

× ln
[

1+ (c+b)ρ0

1+ cρ0

]
−

(
c̄i − b̄i

)
ρ0

1+ (c−b)ρ0
− aSRKρ0

RT0b

×
[

c̄i + b̄i

1+ (c+b)ρ0
− c̄i

1+ cρ0

]
(24)

with

āSRK,i =
[
∂ (naSRK)

∂ni

]

T0,ρ0,nj �=i

=
{

āSRK,1 =2z1a1 +2z2 (1−k12) (a1a2)
1/2 −aSRK

āSRK,2 =2z2a2 +2z1 (1−k12) (a1a2)
1/2 −aSRK

(25)

b̄i =
[
∂ (nb)

∂ni

]

T0,ρ0,nj �=i

=bi (26)

c̄i =
[
∂ (nc)

∂nj

]

T0,ρ0,nj �=i

= ci (27)

where the expressions for āSRK,1 and āSRK,2 in Eq. (25) are examples for
a binary mixture.
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3.3. Representation of the Scale Factors

For the analytical representation of the scale factor functions fm
and hm of the target mixture, a general function approximator is inte-
grated into the EEoS model with a procedure similar to that used in the
first part of this work for pure fluids [18]. As in that case, the prob-
lem is to “spread” the functional form of the thermodynamic surface
over known values of thermodynamic properties distributed on the sur-
face itself. In fact, the new EEoS model includes a multiparameter func-
tion whose coefficients are obtained through an optimization procedure for
which an objective function, defined as a sum of squares considering a
number of thermodynamic quantities, has to be minimized.

The chosen neural network in the MLFN format is an effective and
powerful function approximator [21] with an a priori known functional
form, and it was formerly applied in a similar framework for modeling
the thermodynamic properties [16–18, 24, 25] and the transport properties
[26–29] of pure fluids and mixtures. The use of neural networks for the
representation of the scale factor functions of the model is indicated by
the name “EEoS-NN” given to the proposed technique. For the sake of
brevity, the mathematical formulation of MLFN is only summarized here,
but reference is made to the paper for pure fluids [18] where it is presented
in detail.

The MLFN is applied to simultaneously represent the scale factor
functions fm = fm (Tm, ρm, z̄) and hm = hm (Tm, ρm, z̄) as functions of the
independent variables Tm, ρm, and z̄

(= z1, . . . , zC−1
)
, i.e., temperature,

density, and C −1 mole fractions of the mixture of interest. In this archi-
tecture, schematically shown in Fig. 1, there are several neuron layers
(multilayer) and the information goes in only one direction, from input to
output (feedforward). The I − 1 inputs Ui enter the I − 1 neurons of the
input layer, while the I th neuron has a constant value equal to Bias1. The
inputs Ui represent the independent variables of the problem: I is equal to
4 for a binary mixture, equal to 5 for a ternary mixture, and so on. The
outputs S1 and S2 of the output layer are the dependent variables of the
problem, i.e., the scale factors fm and hm; in the present case the number
of neurons K in the output layer is equal to 2. The neural network appli-
cation is easier if the inputs and outputs have the same range of values;
therefore, the variables are scaled and compressed in an arbitrarily chosen
range [0.05, 0.95] as explained in detail in Ref. 18.

The number of neurons J in the hidden layer can be varied by trial
and error searching for the lowest value of the objective function to min-
imize, but it must be limited to avoid overfitting problems. In the pres-
ent work, J was chosen equal to 11 for binary mixtures and equal to 7
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for ternary mixtures. These values are a compromise between the accuracy
of the equations and the computational speed. Considering the number of
data used for the regression, such values are sufficiently low to avoid over-
fitting. The last neuron of the hidden layer has a constant value indicated
as Bias2.

The transfer function g (x) converts the input signals to output for
each neuron; in the present work an arctangent function normalized in the
range [0,1] was chosen;

g (x)= 1
π

arctan (γ x)+ 1
2

(28)

with γ = 0.5. The analytical form of the present MLFN is essentially
represented by

UI =Bias1 (29)

Hj =g

(
I∑

i=1

wijUi

)
with 1�j�J (30)

HJ+1 =Bias2 (31)

Sk =g




J+1∑

j=1

wjkHj



 with 1�k�K (32)

where the g function in Eqs. (30) and (32) is given by Eq. (28).

...

H
J+1

=Bias2

H
J

H
j

H4

H
3

H
2

H1

S
2

S1

U
I
=Bias1

U
I-1

U2

U
1

w
jk

w
ij

Output layer
K

Hidden layer
J+1

Input layer
I

...
...

Fig. 1. General topology of a three-layer feedforward neural network.
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The parameter arrays w̄ij and w̄jk in the function approximator have
to be regressed by minimization of an objective function calculated from
experimental data for the target mixture, as will be explained in the fol-
lowing section. Since the method is totally heuristic, it is essential that the
experimental data are as evenly distributed as possible.

Once the training procedure has been completed and the values of the
parameters are known, all the elements of the EEoS-NN are available and
the thermodynamic properties of the mixture of interest are easily calcu-
lated through simple mathematical operations.

For an example of the procedure for the calculation of a thermody-
namic property function according to the present model, reference can be
made to the analogous case for pure fluids described in Section 4.3 of
the first part of this work [18]. Only the mole fraction variables are to be
added in that explanation. The corresponding formalism is reported in the
Appendix. The calculation of the vapor–liquid equilibrium (VLE) requires
the solution of the equation system,






xsat
1 ϕ̂sl

1 =ysat
1 ϕ̂sv

1
...

xsat
i ϕ̂sl

i =ysat
i ϕ̂sv

i
...

xsat
C ϕ̂sl

C =ysat
C ϕ̂sv

C

(33)

where the superscript sat denotes a value at saturation, the superscripts sl
and sv stand for saturated liquid and saturated vapor conditions, while the
arrays x̄sat and ȳsat are the mole fractions of the liquid and of the vapor
phase in equilibrium, respectively. For each component i the partial molar
fugacity coefficient ϕ̂i is calculated from Eq. (15) for the saturated liquid
at
(
T ,ρsl, x̄sat

)
conditions and for the saturated vapor at

(
T ,ρsv, ȳsat

)
con-

ditions. The densities of the two phases are obtained at given tempera-
ture, pressure, and composition conditions as density values for which the
calculated pressure equals the assigned value. Depending on the type of
VLE calculation considered, the unknowns of the equation system, Eq.
(33), can be chosen among temperature, pressure, liquid phase composi-
tion, and vapor phase composition.

4. TRAINING OF THE EEoS-NN MODEL

The training of an EEoS-NN model aims at the determination of the
mixture scale factor functions fm and hm over the whole (T , ρ, z̄) range
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of interest through an optimization procedure that uses the available data
of the experimentally accessible thermodynamic quantity as input.

The main goal of the present work is to verify the effectiveness of the
proposed modeling technique and its capability in representing the thermody-
namic surfaces of mixtures. Therefore, similarly to what was done in the first
part for pure fluids [18], generated values of thermodynamic properties were
chosen instead of experimental data, because the first ones can be regularly
distributed over the whole range of interest and they are affected neither by
experimental uncertainty nor by error noise. In this way, the heuristic method
can work under the most favorable conditions, since the drawbacks of exper-
imental data are avoided. The evaluation of the results is not affected by the
accuracy level of the data in this preliminary test.

Five binary and two ternary mixtures of haloalkanes were considered,
and for all of them, the DEoSs used for data generation were taken from
Ref. 5. The critical constants and the SRK parameters for the pure flu-
ids relevant as components of the selected mixtures are reported in Table I
together with their literature references.

In a first step, only density data in the form (T ,P,ρ, z̄) and cover-
ing the vapor, liquid, and supercritical regions, together with VLE data in
the form (T ,P sat, x̄sat, ρsl, ȳsat, ρsv), were used as inputs for the regression.
The VLE data are necessary to locate the bubble and dew surfaces of the
mixture.

A grid of calculated densities was generated in the independent vari-
ables T ,P, z̄ with a constant step for each variable inside the respective
range. This pseudo-experimental data set was subdivided into a training
set and a validation set. The first one was obtained extracting a subset
of values from the original set, and the second one was composed of
the remaining values. The data of the training set were assumed for the
regression of the mixture-specific equations, while the validation data were
used to check the performances of the obtained models. Following similar
criteria, sets of training and validation VLE data were produced for the

Table I. Critical Constants and Parameters for the Pure Fluids Involved in
the Considered Binary and Ternary Mixtures

Fluid Tc (K) Pc (MPa) ω c (L·mol−1) Ref.

R32 351.255 5.782 0.2768 1.29133×10−2 30
R125 339.33 3.629 0.30349 7.79698×10−3 31
R134a 374.18 4.05629 0.32689 1.13412×10−2 32
R143a 346.04 3.7756 0.26113 1.34996×10−2 33
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whole coexistence locus in the considered temperature range. Moreover,
values of several thermodynamic properties were generated for each point
of the validation set, in order to verify the behavior of the equations also
with respect to such quantities.

The number of data and their range for each considered mixture are
reported in Table II. The data are distributed in three main thermody-
namic regions, which are the liquid phase (denoted by l), the vapor phase
(denoted by v), and the supercritical region (denoted by sc). In this work
the supercritical region is conventionally identified as the thermodynamic
region at temperatures higher than the pseudocritical temperature and
pressures higher than the pseudocritical pressure, calculated by the mixing
rules of Tillner-Roth et al. [5].

For the training step an objective function fob, accounting for the
deviations between the model and the data, has to be defined for each
of the thermodynamic quantities on which the equation is regressed. The
variables of the fob function are the parameters w̄ij and w̄jk, whose values
are to be found through a minimization procedure of the fob function.

Table II. Characteristics of the Generated Data for the Considered Mixtures

Mixture T Range (K) P Range (MPa) z1 Range z2 Range

R32/R125 250–400 0.3–8.0 0.01–0.98 –
R32/R134a 250–400 0.3–8.0 0.01–0.98 –
R125/R134a 250–400 0.3–8.0 0.01–0.98 –
R125/R143a 250–400 0.3–8.0 0.01–0.98 –
R143a/R134a 250–400 0.3–8.0 0.01–0.98 –
R32/R125/R134a 250–400 0.3–8.0 0.01–0.98 0.01–0.98
R125/R143a/R134a 250–400 0.3–8.0 0.01–0.98 0.01–0.98

Training NPT Validation NPT

P,ρ, T , z̄ VLE Each of nine properties a VLE

sc l v Overall sc l v Overall

R32/R125 137 388 253 778 44 834 2305 1448 4587 115
R32/R134a 80 473 218 771 53 456 2822 1239 4517 140
R125/R134a 126 471 185 782 51 677 2815 1030 4522 133
R125/R143a 168 394 203 765 42 927 2391 1107 4425 113
R143a/R134a 114 489 183 786 53 612 2893 1020 4525 136
R32/R125/R134a 101 311 187 599 64 902 3382 1834 6118 354
R125/R143a/R134a 111 321 170 602 64 1101 3491 1479 6071 344

a Properties: ZR, aR, uR, hR, gR, sR, cR
v , cR

p , w.
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In the present case, it was chosen to train the MLFN only on density
values in the vapor, liquid, and supercritical regions, and on the liquid-
vapor coexistence surface.

Considering a mixture of C components for which a set of NPTZ

density data and a set of NPTϕ VLE data are available, two objective
functions can be defined:

fob,ZR = 1
NPTZ

NPTZ∑

i=1




(
ZR

m
)exp
i

− (ZR
m
)calc
i(

ZR
m
)exp
i




2

(34)

fob,ϕ−ϕ = 1
NPTϕ

NPTϕ∑

j=1

C∑

k=1

[(
lnxsat

k + lnϕ̂sl
k

)

j
− (lnysat

k + lnϕ̂sv
k

)
j

]2

(35)

for the residual compressibility factor and coexistence, respectively. The
superscripts exp and calc stand for experimental and calculated values.
In Eq. (35) xsat

k and ysat
k are experimental values, while ϕ̂sl

k and ϕ̂sv
k are

calculated through the EEoS-NN model at the experimental conditions(
T ,ρsl, x̄sat

)
and

(
T ,ρsv, ȳsat

)
. Since in the present study only generated

values were considered instead of real experimental data, the term “exper-
imental value” refers to values generated from the corresponding DEoS in
Ref. 5.

The training step aims at the minimization of an overall objective
function fob, ov obtained as a combination of the ones for density and
coexistence. The two contributions are differently weighted in the overall
function by means of the coefficient ξ1:

fob, ov = ξ1 fob,ZR + (1− ξ1) fob,ϕ−ϕ (36)

In this case, the value of the coefficient ξ1 satisfactorily balancing the two
contributions was set to 0.8. The application of the training procedure to
the generated data gave a mixture-specific equation in EEoS-NN format
for each of the target mixtures reported in Table II.

In a second step of the study, the EEoS-NN model was regressed
assuming an objective function which includes, besides the unavoidable
density and VLE data, some caloric quantities such as the isochoric heat
capacity Cv, the isobaric heat capacity Cp, and the speed of sound w. The
overall objective function fob, ov for this multiproperty fitting is again cal-
culated as the sum of two contributions, but the first one now reads

fob,1 = 1
P ·NPT1

P∑

p=1

ξp

NPT1∑

i=1

[
(mm)

exp
i − (mm)calc

i

(mm)
exp
i

]2

p

(37)
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In Eq. (37), the pth property m alternatively represents the residual com-
pressibility factor ZR, the reduced residual isochoric heat capacity cR

v , the
reduced residual isobaric heat capacity cR

p , and the speed of sound w; in
this case P is equal to 4. Each of the four mentioned properties has a
training set containing NPT1 values and its contribution is weighted in the
summation according to the individual factor ξp.

The second component fob,ϕ−ϕ of the objective function is repre-
sented by Eq. (35) and the two contributions are combined together giving

fob, ov = ξ2 fob,1 + (1− ξ2) fob,ϕ−ϕ (38)

where the coefficient ξ2 has to be properly chosen; in this study it was set
equal to 0.8 again.

In both cases the training of the MLFN is obtained from the min-
imization of either Eq. (36) or Eq. (38) through a conventional gradient
descent technique [34].

The main purposes of the present study are the test and analysis of
capability and performances of the proposed modeling method. Therefore,
the numerical details, i.e., the parameters w̄ij and w̄jk, of the functional
forms obtained for the studied systems are reported in Table III for only
a couple of mixtures for the convenience of the reader. In fact, they have
a limited interest for practical applications since DEoSs already exist for
all the considered mixtures [5].

5. VALIDATIONS

The main requirement for an EoS is the capability to accurately
represent any thermodynamic property. In fact, all thermodynamic sur-
faces can be obtained by differentiation of the residual part aR

m (Tm, ρm, z̄)

of a fundamental Helmholtz energy model, as for instance the residual
compressibility factor ZR

m (Tm, ρm, z̄), the reduced residual internal energy
uR

m (Tm, ρm, z̄), the reduced residual entropy sR
m (Tm, ρm, z̄), the reduced

residual enthalpy hR
m (Tm, ρm, z̄), the reduced residual Gibbs energy

gR
m (Tm, ρm, z̄), etc.

The performance of the obtained EEoS-NN models in representing
such surfaces was verified in a validation step. As explained in Section
4, data generated from literature DEoSs for the studied mixtures were
used for this purpose, considering them as “true” experimental values. In
this way the drawbacks coming from the experimental uncertainty and the
uneven distribution of literature experimental data in the range of validity
are avoided.
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In this work, the percentage deviation 
 (%) and the percentage aver-
age absolute deviation AAD (%) with respect to a data base of NPT val-
ues are evaluated as


 (%)=100
mexp −mcalc

mexp (39)

AAD (%)= 1
NPT

NPT∑

i=1

|
 (%)|i (40)

where m indicates a thermodynamic function, as for instance ZR, aR, uR,
hR, etc. When dealing with VLE data, the deviation in the composition of
the coexisting phases is calculated as


j = z
exp
j − zcalc

j (41)

where zj represents the mole fraction of the j th component in the liquid
or vapor phase; in these cases the AAD for each phase is reported in the
tables as a mean value of the AADs of the components:

AAD= 1
C

C∑

j=1

1
NPT

NPT∑

i=1

∣∣
j

∣∣
i

(42)

For the present validation step, the assumed independent variables are
the temperature Tm, the pressure Pm, and the mole fraction array z̄; there-
fore, a procedure of inversion is required for the calculation of the den-
sity ρm, which is an independent variable of the fundamental equations in
terms of Helmholtz energy.

Two VLE cases are considered for the validation at saturation
conditions:

• the “Bubble P” case, for which the inputs are the temperature and
the liquid phase compositions, while the variables to be calculated
are the pressure and the vapor phase compositions;

• the “Dew P” case, for which the inputs are the temperature and
the vapor phase compositions, while the variables to be calculated
are the pressure and the liquid phase compositions.
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5.1. Basic Accuracy of a Cubic One-Fluid-Model EoS: Case of SRK
with Volume Translation

First of all, the SRK cubic EoS [19, 20] with the Peneloux volume
translation [22], applied to mixtures as a one-fluid model, was validated
with respect to the generated data in the validation sets for properties
involving only first-order derivatives of aR

m with respect to temperature or
density. The physical constants and the coefficients reported in Table I
were used for the components, whereas the binary interaction parameters
kij were set to zero. The SRK performances represent the “starting point”
of the proposed modeling technique; in fact, the discrepancies between the
data and the predictions of this equation are corrected through the appli-
cation of the scale factors.

Results for the SRK equation with kij =0 are reported in Table IV for
the considered binary and ternary mixtures. The performances are rather
homogeneous for all the systems, but the prediction errors for the proper-
ties depending on first derivatives of the residual Helmholtz energy range
to several parts per cent. The worse performances are found for properties
involving only temperature derivatives like uR

m and sR
m, particularly, in the

vapor region where the AADs can generally exceed 10%.
Table V shows the accuracy of the SRK model for the thermody-

namic properties depending on second and cross derivatives of aR
m. The

results for isochoric and isobaric heat capacities, and for the speed of
sound are similar for binary and ternary mixtures, but are worse than
those obtained for first-order properties, see Table IV. In particular, the
residual heat capacities show very high deviations, which are consider-
ably reduced when also the ideal part of the properties is considered. The
errors are rather homogeneous in all the regions for the heat capacities,
but for the speed of sound the good results in the vapor phase are in con-
trast with the poor performance in the liquid phase, where a mean devi-
ation of about 25% is obtained. This is due to the ideal-gas contribution
for speed of sound that prevails in the vapor phase.

Table VI shows the SRK model performance for the prediction of the
properties at equilibrium conditions for binary and ternary mixtures. The
bubble- and dew-point pressures and the phase compositions are predicted
with acceptable accuracies, whereas the deviations for the densities at sat-
uration are higher, with worse values for the saturated liquid density.

Considering the reported results, it can be concluded that from an
overall point of view the accuracy of the SRK cubic EoS, using mixing
rules set with kij =0, cannot be regarded as satisfactory.
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Table IV. Accuracy of the SRK Equation for Thermodynamic Quantities Depending on
First Derivatives of Residual Helmholtz Energy in the Three Main Thermodynamic Regions

AAD (%)

sc l v Overall sc l v Overall

Mixture ZR
m sR

m

R32 + R125 3.64 0.86 3.28 2.13 3.89 2.11 17.65 7.34
R32 + R134a 4.81 0.82 4.43 2.21 5.00 3.34 22.35 8.72
R125 + R134a 5.11 0.78 2.08 1.72 2.66 2.09 13.74 4.83
R125+R143a 6.35 0.90 3.09 2.59 2.99 2.07 12.96 4.99
R143a + R134a 6.29 0.82 4.08 2.29 3.25 3.08 18.07 6.48
Mean 5.26 0.83 3.42 2.19 3.45 2.57 17.14 6.48
R32 + R125 + R134a 4.12 0.80 3.56 2.12 3.57 2.55 19.24 7.70
R125 + R143a + R134a 5.93 0.80 2.83 2.22 2.88 2.12 14.25 5.21
Mean 5.11 0.80 3.23 2.17 3.19 2.33 17.01 6.46

uR
m aR

m

R32 + R125 3.51 1.43 11.93 5.12 4.00 2.98 3.53 3.34
R32 + R134a 5.64 1.82 15.58 5.98 6.66 2.98 4.55 3.78
R125 + R134a 3.24 1.19 8.99 3.27 5.67 2.24 2.07 2.71
R125 + R143a 3.82 1.28 8.91 3.72 7.15 3.38 3.01 4.08
R143a + R134a 5.16 1.57 12.63 4.55 8.46 2.81 4.09 3.86
Mean 4.10 1.47 11.74 4.53 6.28 2.86 3.49 3.55
R32 + R125 + R134a 3.72 1.51 13.18 5.33 4.74 2.73 3.70 3.32
R125 + R143a + R134a 3.59 1.21 9.66 3.70 6.60 2.72 2.72 3.42
Mean 3.65 1.36 11.61 4.52 5.76 2.72 3.26 3.37

hR
m gR

m

R32 + R125 3.23 1.32 9.44 4.23 3.83 2.38 3.41 2.97
R32 + R134a 5.44 1.66 12.58 5.04 5.94 2.37 4.49 3.31
R125 + R134a 3.36 1.10 7.01 2.79 5.49 1.82 2.04 2.42
R125 + R143a 4.15 1.20 7.22 3.32 6.87 2.70 3.04 3.65
R143a + R134a 5.38 1.44 10.29 3.97 7.63 2.25 4.08 3.39
Mean 4.16 1.35 9.41 3.87 5.89 2.29 3.44 3.15
R32 + R125 + R134a 3.62 1.39 10.51 4.45 4.50 2.19 3.63 2.96
R125 + R143a + R134a 3.85 1.13 7.70 3.23 6.37 2.18 2.76 3.08
Mean 3.75 1.26 9.26 3.84 5.53 2.18 3.24 3.02

5.2. Validation of the EEoS-NN Models Trained on Density
and Coexistence Data

The corresponding results for the EEoS-NN models are reported in
Tables VII–IX. The performance improvement achieved by the correction
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Table V. Accuracy of the SRK Equation for Thermodynamic Quantities Depending on Second
Derivatives of Residual Helmholtz Energy in the Three Main Thermodynamic

Regions

AAD (%)

sc l v Overall sc l v Overall

Mixture cR
v,m Cv,m

R32 + R125 48.88 30.22 69.97 46.16 8.33 6.26 6.08 6.58
R32 + R134a 52.39 31.08 73.71 44.93 11.01 7.16 7.00 7.50
R125 + R134a 39.29 41.35 67.51 47.00 5.33 6.74 3.90 5.88
R125 + R143a 40.36 41.95 65.45 47.50 4.94 6.54 3.60 5.47
R143a + R134a 40.69 39.21 71.14 46.61 6.11 6.83 4.67 6.25
Mean 43.80 36.86 69.68 46.43 6.82 6.73 5.17 6.34
R32 + R125 + R134a 49.85 30.82 71.20 45.73 8.84 6.69 5.73 6.72
R125 + R143a + R134a 40.21 41.39 66.68 47.34 5.12 6.79 3.32 5.64
Mean 44.55 36.19 69.18 46.53 6.80 6.74 4.65 6.18

cR
p,m Cp,m

R32 + R125 11.01 15.84 31.87 20.02 6.25 8.03 6.15 7.11
R32 + R134a 12.54 17.29 36.45 22.07 8.19 8.71 7.31 8.28
R125 + R134a 10.23 10.61 28.71 14.67 5.67 4.63 4.26 4.70
R125 + R143a 12.14 14.18 27.58 17.11 6.29 6.12 4.02 5.63
R143a + R134a 12.23 14.46 33.21 18.38 7.11 6.29 5.39 6.20
Mean 11.57 14.43 31.71 18.46 6.55 6.73 5.53 6.39
R32 + R125 + R134a 11.15 14.71 33.80 19.91 6.54 7.34 5.86 6.78
R125 + R143a + R134a 11.39 11.66 29.15 15.87 5.95 5.07 3.67 4.89
Mean 11.28 13.16 31.72 17.90 6.22 6.19 4.88 5.84

wm

R32 + R125 7.94 23.18 0.57 13.27
R32 + R134a 10.64 23.73 0.89 16.15
R125 + R134a 7.49 24.81 0.41 16.66
R125 + R143a 7.14 25.17 0.61 15.25
R143a + R134a 8.46 24.39 0.76 16.91
Mean 8.08 24.27 0.65 15.64
R32 + R125+R134a 8.77 23.67 0.61 14.56
R125 + R143a + R134a 7.16 25.02 0.47 15.80
Mean 7.89 24.36 0.55 15.18

through the scale factors is very high; in most cases the deviations are
reduced by two orders of magnitude compared to the SRK EoS.

Table VII shows the performances of the EEoS-NN models with
respect to properties depending on first derivatives of the residual Helm-
holtz energy; these results have to be compared with Table IV for the
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Table VI. Accuracy of the SRK Equation for VLE Conditions at the Bubble and Dew Points

AAD (%) AAD

Mixture P sat
bubble P sat

dew ρsl ρsv x̄sat
dew ȳsat

bubble

R32 + R125 0.86 0.82 7.79 2.28 0.0023 0.0023
R32 + R134a 1.03 0.79 7.37 2.18 0.0034 0.0034
R125 + R134a 0.84 0.72 6.26 1.25 0.0020 0.0020
R125 + R143a 2.99 3.02 7.53 1.44 0.0048 0.0047
R143a + R134a 1.62 1.40 6.61 1.06 0.0029 0.0029
Mean 1.43 1.31 7.08 1.63 0.0031 0.0030
R32 + R125 + R134a 0.86 0.61 6.98 2.20 0.0027 0.0021
R125 + R143a + R134a 2.16 1.75 6.35 0.99 0.0036 0.0033
Mean 1.50 1.17 6.67 1.60 0.0031 0.0027

SRK EoS. The values for the residual compressibility factor ZR
m in the

liquid phase are particularly impressive, since this property is described
with very low deviations. The deviations for the other residual properties
are absolutely satisfactory, also considering that no information for them
was supplied to the regression procedure. Although maintaining an excel-
lent overall performance, it can be observed that the poor performances of
the SRK model on the properties uR

m and sR
m, involving only temperature

derivatives of the aR
m function, have consequences also on the representa-

tion of the same properties obtained by the EEoS-NN model. In general,
a limited worsening performance is found when ternary mixtures are con-
sidered.

Table VIII shows mean deviations of the proposed models with
respect to cR

v,m, cR
p,m, Cv,m, Cp,m, and wm for binary and ternary mixtures.

The description of these second-order properties by the EEoS-NN models
has to be regarded as predictive, and consequently the obtained results are
rather satisfactory. The residual caloric properties cR

v,m and cR
p,m are hom-

ogenously represented with an acceptable accuracy in the three thermody-
namic regions; for Cv,m, Cp,m, and wm the best results are found in the
vapor region, where the ideal part of each of these properties gives the
prevailing contribution to the overall value, allowing for a “dilution” of
the deviation for the residual part. In the liquid phase the heat capacities
are predicted worse, but in any case the derivations are comparable with
the experimental uncertainties for these properties.

VLE data are reproduced in an excellent way as well, as shown in
Table IX. The saturated liquid density is represented with a higher accu-
racy than the saturated vapor density. This is coherent with the results for
ZR

m in the compressed liquid and superheated vapor regions reported in
Table VII.
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Table VII. Accuracy of the EEoS-NN Models for Thermodynamic Quantities Depending on
First Derivatives of Residual Helmholtz Energy; Training on Density and

Coexistence Data

AAD (%)

sc l v Overall sc l v Overall

Mixture ZR
m sR

m

R32 + R125 0.122 0.003 0.134 0.066 0.455 0.357 0.839 0.527
R32 + R134a 0.143 0.001 0.070 0.033 0.466 0.170 0.356 0.742
R125 + R134a 0.057 0.001 0.055 0.022 0.264 0.112 0.356 0.191
R125 + R143a 0.036 0.001 0.045 0.019 0.131 0.081 0.377 0.166
R143a + R134a 0.045 0.001 0.055 0.019 0.266 0.177 0.569 0.278
Mean 0.076 0.001 0.076 0.032 0.301 0.176 0.517 0.382
R32 + R125 + R134a 0.541 0.009 0.467 0.225 1.372 0.612 1.577 1.013
R125 + R143a + R134a 0.308 0.006 0.277 0.127 1.260 0.475 1.506 0.868
Mean 0.413 0.007 0.382 0.176 1.310 0.542 1.545 0.941

uR
m aR

m

R32 + R125 0.308 0.208 0.537 0.330 0.139 0.038 0.117 0.081
R32 + R134a 0.313 0.097 0.470 0.221 0.143 0.019 0.058 0.042
R125 + R134a 0.178 0.067 0.226 0.120 0.061 0.023 0.042 0.033
R125 + R143a 0.090 0.059 0.235 0.109 0.037 0.026 0.032 0.030
R143a + R134a 0.173 0.102 0.354 0.168 0.057 0.022 0.041 0.031
Mean 0.202 0.104 0.379 0.190 0.083 0.025 0.062 0.044
R32 + R125 + R134a 0.944 0.343 1.010 0.632 0.661 0.096 0.472 0.292
R125 + R143a + R134a 0.895 0.266 0.944 0.545 0.351 0.085 0.245 0.172
Mean 0.917 0.304 0.981 0.589 0.491 0.090 0.371 0.232

hR
m gR

m

R32 + R125 0.252 0.184 0.410 0.268 0.130 0.028 0.121 0.076
R32 + R134a 0.258 0.086 0.358 0.178 0.136 0.015 0.060 0.039
R125 + R134a 0.144 0.059 0.172 0.097 0.059 0.017 0.044 0.029
R125 + R143a 0.075 0.051 0.179 0.088 0.036 0.020 0.035 0.027
R143a + R134a 0.139 0.091 0.268 0.137 0.052 0.017 0.045 0.028
Mean 0.165 0.092 0.288 0.154 0.079 0.019 0.065 0.040
R32 + R125 + R134a 0.787 0.306 0.804 0.526 0.604 0.072 0.461 0.267
R125 + R143a + R134a 0.757 0.237 0.722 0.449 0.331 0.062 0.242 0.155
Mean 0.771 0.271 0.767 0.488 0.454 0.067 0.363 0.211

Summarizing, a large improvement of performance was attained mov-
ing from the simple SRK equation to the EEoS-NN model. Even though
the regression of the scale factor functions was based only on density and
VLE data, the obtained equations show good predictions also for thermo-
dynamic properties not involved in the training process.
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Table VIII. Accuracy of the EEoS-NN Models for Thermodynamic Quantities Depending
on Second Derivatives of Residual Helmholtz Energy; Training on Density and Coexistence

Data

AAD (%)

sc l v Overall sc l v Overall

Mixture cR
v,m Cv,m

R32 + R125 9.157 7.582 7.213 7.752 1.469 1.568 0.656 1.262
R32 + R134a 8.406 4.292 7.153 5.492 1.715 1.050 0.684 1.017
R125 + R134a 4.905 2.599 4.029 3.270 0.624 0.422 0.307 0.426
R125 + R143a 2.823 1.083 5.074 2.446 0.362 0.170 0.253 0.231
R143a + R134a 5.316 8.548 5.686 7.466 0.735 1.658 0.405 1.250
Mean 5.893 4.856 5.967 5.305 0.917 0.981 0.480 0.841
R32 + R125+R134a 7.146 17.563 7.173 12.913 1.254 3.827 0.693 2.508
R125 + R143a + R134a 11.503 9.045 9.178 9.523 1.498 1.373 0.567 1.199
Mean 9.541 13.236 8.068 11.225 1.388 2.581 0.637 1.856

cR
p,m Cp,m

R32 + R125 1.806 1.864 2.955 2.198 0.990 0.870 0.674 0.830
R32 + R134a 2.063 1.053 2.670 1.598 1.286 0.517 0.600 0.618
R125 + R134a 0.881 0.659 1.571 0.900 0.495 0.271 0.337 0.320
R125 + R143a 0.629 0.190 2.025 0.741 0.314 0.078 0.272 0.176
R143a + R134a 0.846 2.671 2.094 2.294 0.489 1.086 0.412 0.853
Mean 1.182 1.308 2.324 1.552 0.667 0.571 0.477 0.562
R32 + R125 + R134a 3.706 4.486 3.533 4.085 2.530 2.027 0.756 1.720
R125 + R143a + R134a 2.503 1.510 4.050 2.309 1.402 0.632 0.715 0.792
Mean 3.045 2.974 3.764 3.200 1.910 1.318 0.738 1.258

wm

R32 + R125 0.749 0.885 0.055 0.598
R32 + R134a 0.808 0.625 0.066 0.490
R125+R134a 0.342 0.181 0.024 0.169
R125 +R143a 0.176 0.139 0.013 0.116
R143a + R134a 0.364 0.323 0.027 0.262
Mean 0.459 0.422 0.039 0.329
R32 + R125 + R134a 1.038 1.988 0.085 1.277
R125 + R143a + R134a 1.132 0.950 0.066 0.768
Mean 1.090 1.461 0.077 1.023

5.3. Validation of the EEoS-NN Models Trained on Multiproperty Data

The validation procedure was repeated for the model trained on gen-
erated values of the four thermodynamic quantities ZR, cR

v , cR
p , w plus the

VLE data. For the sake of brevity the study was carried out for only one
mixture, i.e., for the R32 + R134a system.
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Table IX. Accuracy of the EEoS-NN Models for VLE Conditions at Bubble and Dew Points;
Training on Density and Coexistence Data

AAD (%) AAD

Mixture P sat
bubble P sat

dew ρsl ρsv x̄sat
dew ȳsat

bubble

R32 + R125 0.120 0.121 0.042 0.224 0.0001 0.0001
R32 + R134a 0.064 0.068 0.025 0.107 0.0001 0.0001
R125 + R134a 0.077 0.078 0.022 0.110 0.0000 0.0000
R125 + R143a 0.088 0.088 0.020 0.051 0.0000 0.0000
R143a + R134a 0.080 0.083 0.021 0.072 0.0000 0.0000
Mean 0.084 0.086 0.026 0.111 0.0000 0.0000
R32 + R125 + R134a 0.264 0.321 0.181 0.710 0.0006 0.0005
R125 + R143a + R134a 0.177 0.189 0.072 0.668 0.0002 0.0003
Mean 0.221 0.256 0.127 0.689 0.0004 0.0004

Comparing the present results reported in Table X with those obtained
for the model trained on density and VLE data, Tables VII and VIII,
it can be noted that the performance in the representation of first-order
properties is decreased more or less for all of them, but in general not sig-
nificantly. On the contrary, for the heat capacities an evident improvement
is attained, in particular, for the isochoric heat capacity. The representa-
tion of the speed of sound is improved as well, but to a lower extent than
for the other properties. Therefore, the inclusion of second-order quanti-
ties in the training set improves the accuracy of the EEoS-NN model for
the same quantities, because information about higher-order derivatives of
aR

m is supplied to the model.
The validation results for the vapor–liquid coexistence locus, reported

in Table XI, are good and show a level of accuracy rather similar to the
one obtained for the model trained on density and coexistence data only,
Table IX.

A further training case, which involves density, VLE, and speed of
sound data in the regression process, was considered. This set of data cor-
responds to the thermodynamic properties involving first-order derivatives
of the residual Helmholtz energy function and the speed of sound, which
can be measured with great accuracy. The validation results reported in
Tables X and XI show an improvement in the performance on speed of
sound compared to the former case, although slightly sacrificing the accu-
racy on heat capacities. The other properties are reproduced approximately
at the same level as before.
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Table XI. Accuracy of the EEoS-NN Model for the R32 + R134a Mixture for VLE Conditions
at Bubble and Dew Points; Multiproperty Training Cases

AAD (%) AAD

Training P sat
bubble P sat

dew ρsl ρsv x̄sat
dew ȳsat

bubble

ZR, cR
v , cR

p , w + VLE 0.142 0.155 0.124 0.257 0.0004 0.0004
ZR, w + VLE 0.171 0.186 0.089 0.412 0.0003 0.0003
ZR + VLE 0.064 0.068 0.025 0.107 0.0001 0.0001

6. CONCLUSIONS

A new modeling method for developing a dedicated EoS, which was
formerly proposed for pure fluids [18], has been extended to mixtures. The
method, synthetically indicated as EEoS-NN, recovers the basic frame-
work of the extended corresponding states technique, but a basic equation
is assumed instead of a reference fluid. This allows the exclusion of the
conformality requirement and of the necessity of an EoS for a reference
fluid, because an equation for the target system itself is assumed as a ref-
erence. It was demonstrated that a simple equation, such as the SRK cubic
EoS applied to a mixture as a one-fluid model with van der Waals mixing
rules, is sufficient for such a purpose.

A powerful function approximator in the form of a MLFN was
integrated into the model to represent the mixture scale functions. The
DEoS of a target mixture is then obtained through a training procedure
that determines the individual coefficients of the mixture scale functions
through regression on experimental data of thermodynamic properties for
the system of interest.

Based on generated data, the performance of the proposed method
was verified for some haloalkanes systems. Five binary mixtures and two
ternary mixtures were considered, obtaining very promising results.

The study has shown that precise density and VLE mixture data are
sufficient to train an EEoS-NN model to excellently represent thermody-
namic properties involving the first derivatives of the Helmholtz energy
function and to satisfactorily represent those properties involving the sec-
ond and cross derivatives of aR

m. The performance of the model on these
properties can be improved by including data for such quantities into the
training set, according to the requirements that the obtained DEoS has to
fulfill.

The satisfactory results obtained in this study with generated data
show that the proposed method is an effective modeling technique for the
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development of a DEoS for a mixture of interest from multiproperty data.
It is an alternative to the presently available most advanced methods.

Having verified such promising performances for the proposed model
based on generated data, it is now possible to reliably develop a mixture
DEoS in the EEoS-NN format directly from experimental data.

APPENDIX

Calculation of Thermodynamic Properties for a Mixture
from an Equation of State in EEoS-NN Format

The equations required for the calculation of the thermodynamic
properties of a mixture according to the proposed EEoS-NN format are
given here. As previously explained, the subscript m refers to the mixture
of interest, while the subscript 0 denotes values calculated from the basic
equation for the model, which in the present case is the SRK cubic EoS
[19, 20, 22] with the mixing rules of van der Waals for the parameters. The
independent variables of the EEoS model and of the basic equation are
related by

T0 =Tm/fm ρ0 =ρmhm (A1, A2)

while the mole fraction array z̄ is the same. The main thermodynamic
properties considered in this work are obtained as:

Compressibility factor: ZR
m ≡Pm

/
ρmRTm −1=Fρ uR

0 + (1+Hρ

)
ZR

0

(A3)

Helmholtz energy: aR
m =AR

m
/
RTm =aR

0 (A4)

Internal energy: uR
m =UR

m
/
RT m = (1−FT ) uR

0 −HT ZR
0 (A5)

Enthalpy: hR
m =HR

m
/
RTm =hR

0 + (Fρ −FT

)
uR

0
+ (Hρ −HT

)
ZR

0
(A6)

Gibbs energy: gR
m =GR

m
/
RTm =gR

0 + Fρ uR
0 + Hρ ZR

0 (A7)

Entropy: sR
m =SR

m
/
R = sR

0 − FT uR
0 − HT ZR

0 (A8)

Isochoric heat capacity: cR
v,m =CR

v,m
/
R =−T 2

m

(
∂2aR

m

∂T 2
m

)

ρm,z̄

+2uR
m

(A9)
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Isobaric heat capacity: cR
p,m =CR

p,m

/
R = cR

v,m

+

[
1+ZR

m +ρmTm

(
∂2aR

m

∂ρm∂Tm

)

z̄

]2

1+2ZR
m +ρ2

m

(
∂2aR

m

∂ρ2
m

)

Tm,z̄

−1

(A10)

Speed of sound: wm =
√√√√RTm

Mm

Cp,m

Cv,m

[
1+2ZR

m +ρ2
m

(
∂2aR

m

∂ρ2
m

)

Tm,z̄

]

(A11)

Partial molar fugacity coefficient:

lnϕ̂i =
[
∂ (nlnϕm)

∂ni

]

Pm,Tm,nj �=i

= lnϕ̂0,i − ln
[
1+uR

0 Fρ +ZR
0

(
1+Hρ

)]

+ln
(

1+ZR
0

)
+uR

0

(
Fni

+Fρ

)

+ZR
0

(
Hni

+Hρ

)
(A12)

The second derivatives in Eqs. (A9)–(A11) are calculated with the follow-
ing equations:

T 2
m

(
∂2aR

m

∂T 2
m

)

ρm,z̄

= T 2
0

(
∂2aR

0

∂T 2
0

)

ρ0,z̄

(1−FT )2

+2ρ0 T0

(
∂2aR

0

∂ρ0∂T0

)

z̄

HT (1−FT )+ZR
0 HT T

−uR
0

(
2F 2

T −2FT −FT T

)
+ρ2

0

(
∂2aR

0

∂ρ2
0

)

T0,z̄

H 2
T

(A13)

ρ2
m

(
∂2aR

m

∂ρ2
m

)

Tm,z̄

=T 2
0

(
∂2aR

0

∂T 2
0

)

ρ0,z̄

F 2
ρ −2ρ0 T0

(
∂2aR

0

∂ρ0∂T0

)

z̄

Fρ

(
1+Hρ

)+

+ZR
0

(
2Hρ +Hρρ

)−uR
0

(
2F 2

ρ −Fρρ

)+ρ2
0

(
∂2aR

0

∂ρ2
0

)

T0,z̄

(
1+Hρ

)2

(A14)
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ρm Tm

(
∂2aR

m

∂ρm∂Tm

)

z̄

= T 2
0

(
∂2aR

0

∂T 2
0

)

ρ0,z̄

Fρ (FT −1)

+ρ0 T0

(
∂2aR

0

∂ρ0∂T0

)

z̄

[(
1+Hρ

)
(1−FT )−Fρ HT

]+

+ZR
0

(
HT +HρT

)−uR
0

(
2FT Fρ −Fρ −FρT

)

+ρ2
0

(
∂2aR

0

∂ρ2
0

)

T0,z̄

HT

(
1+Hρ

)
(A15)

The logarithmic derivatives of the scale factor functions are defined as

Fρ ≡ ρm

fm

(
∂fm

∂ρm

)

Tm,z̄

Hρ ≡ ρm

hm

(
∂hm

∂ρm

)

Tm,z̄

(A16, A17)

FT ≡ Tm

fm

(
∂fm

∂Tm

)

ρm,z̄

HT ≡ Tm

hm

(
∂hm

∂Tm

)

ρm,z̄

(A18, A19)

Fρρ ≡ ρ2
m

fm

(
∂2fm

∂ρ2
m

)

Tm,z̄

Hρρ ≡ ρ2
m

hm

(
∂2hm

∂ρ2
m

)

Tm,z̄

(A20, A21)

FT T ≡ T 2
m

fm

(
∂2fm

∂T 2
m

)

ρm,z̄

HT T ≡ T 2
m

hm

(
∂2hm

∂T 2
m

)

ρm,z̄

(A22, A23)

FρT ≡ ρmTm

fm

(
∂2fm

∂ρm∂Tm

)

z̄

HρT ≡ ρmTm

hm

(
∂2hm

∂ρm∂Tm

)

z̄

(A24, A25)

Fni
=
(

∂fm

∂ni

)

Tm,ρm,nj �=i

(
ni

fm

)

= 1
fm

{(
∂fm

∂zi

)

Tm,ρm,zj �=i

−
C−1∑

k=1

[
zk

(
∂fm

∂zk

)

Tm,ρm,zj �=k

]}
(A26)

Hni
=
(

∂hm

∂ni

)

Tm,ρm,nj �=i

(
ni

hm

)

= 1
hm

{(
∂hm

∂zi

)

Tm,ρm,zj �=i

−
C−1∑

k=1

[
zk

(
∂hm

∂zk

)

Tm,ρm,zj �=k

]}
(A27)
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If the SRK cubic equation is selected as the basic equation for the
EEoS model, the quantities in Eqs. (A3)–(A15) are calculated with the fol-
lowing expressions:

aR
0 − ln [1+ (c−b)ρ0]− aSRK

RT0b
ln
[

1+ (c+b)ρ0

1+ cρ0

]
(A28)

ZR
0 =− (c−b)ρ0

1+ (c−b) ρ0
− aSRK

RT0b

[
(c+b) ρ0

1+ (c+b) ρ0
− c ρ0

1+ c ρ0

]
(A29)

uR
0 = 1

Rb

(
∂aSRK

∂T0
− aSRK

T0

)
ln
[

1+ (c+b) ρ0

1+ c ρ0

]
(A30)

hR
0 =uR

0 +ZR
0 (A31)

gR
0 =aR

0 +ZR
0 (A32)

sR
0 =uR

0 −aR
0 (A33)

(
∂2aR

0

∂T 2
0

)

ρ0

=− 1
RbT0

(
∂2aSRK

∂T 2
0

− 2
T0

∂aSRK

∂T0
+ 2aSRK

T 2
0

)
ln
[

1+ (c+b) ρ0

1+ c ρ0

]

(A34)(
∂2aR

0

∂ρ2
0

)

T0

=
[

(c−b)

1+ (c−b) ρ0

]2

+ aSRK

RT0b

{[
(c+b)

1+ (c+b)ρ0

]2

−
(

c

1+ cρ0

)2
}

(A35)(
∂2aR

0

∂ρ0 ∂T0

)
=− 1

RbT0

(
∂aSRK

∂T0
− aSRK

T0

) [
(c+b)

1+ (c+b) ρ0
− c

1+ c ρ0

]

(A36)
lnϕ̂0,i = −ln

{ (
1+ZR

0

)
[1+ (c−b)ρ0]

}

−aSRK

RT0b

(
1+ āSRK,i

aSRK
− b̄i

b

)
ln
[

1+ (c+b)ρ0

1+ cρ0

]

−
(
c̄i − b̄i

)
ρ0

1+ (c−b)ρ0
− aSRKρ0

RT0b

[
c̄i + b̄i

1+ (c+b)ρ0
− c̄i

1+ cρ0

]
(A37)

with

āSRK,i ≡
[
∂ (naSRK)

∂ni

]

T0,ρ0,nj �=i

(A38)

b̄i ≡
[
∂ (nb)

∂ni

]

T0,ρ0,nj �=i

=bi (A39)
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c̄i ≡
[
∂ (nc)

∂ni

]

T0,ρ0,nj �=i

= ci (A40)

In the present work the scale factors are obtained in the form of a
multilayer feedforward neural network. The equations for the calculation
of the scale factors and their derivatives are reported in the following. The
correspondence of the physical variables of the system with the variables
of the neural model is given by

Binary mixtures: V1 =Tm V2 =ρm V3 = z1 (A41, A42, A43)

Ternary mixtures: V1 =Tm V2 =ρm V3 = z1 V4 = z2

(A44, A45, A46, A47)

All mixtures: W1 =fm W2 =hm (A48, A49)

Neural network inputs

Ui =ui

(
Vi −Vi,min

)+Amin with ui = Amax −Amin

Vi,max −Vi,min
for 1�i�I −1

(A50, A51)

UI =Bias1 (A52)

Hidden layer inputs and outputs

Gj =
I∑

i=1

wijUi 1�j�J (A53)

Hj =g

(
I∑

i=1

wijUi

)
1�j�J (A54)

HJ+1 =Bias2 (A55)

Output layer inputs and outputs

Rk =
J+1∑

j=1

wjkHj 1�k�K (A56)

Sk =g (Rk) 1�k�K (A57)
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Physical variable outputs

Wk = Sk −Amin

sk
+Wk,min with sk = Amax −Amin

Wk,max −Wk,min
for 1�k�K

(A.58, A.59)

Output derivatives

∂Wk

∂Vm

= um

sk
g′ (Rk)

J∑

j=1

wmjwjkg
′ (Gj

)
1�m�I −1, 1�k�K (A.60)

∂2Wk

∂Vm∂Vn

= umun

sk
g′′ (Rk)

[
J∑

j=1
wmjwjkg

′ (Gj

)
] [

J∑
j=1

wnjwjkg
′ (Gj

)
]

+

+g′ (Rk)

[
J∑

j=1
wmjwnjwjkg

′′ (Gj

)
]

1�m,n�I −1, 1�k�K

(A.61)

where

g (x)= 1
π

arctan (γ x)+ 1
2

(A.62)

g′ (x)= d g (x)

d x
= γ

π
[
1+ (γ x)2

] (A.63)

g′′ (x)= d2g (x)

d x2
= −2γ 3 x

π
[
1+ (γ x)2

]2
(A.64)
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